Preparation of Muscle and Nerve Biopsies for Electron Microscopy

Rosalind King Institute of Neurology, UCL London

Muscles biopsied

Muscle biopsy

Cutting specimen: muscle

Divide into two

0

- Clamp one piece onto tongue depressor, minimum I cm between clamps.
- Immediately immerse in 2.5% buffered glutaraldehyde
- Divide remainder into 0.5-1 cm cubes and glue onto cork using gum tragacanth.
 - Freeze in precooled isopentane, stir 30s. Place in precooled labelled pot for storage.

Muscle clamps

Cutting muscle for EM blocks

Embedding

Muscle; resin sections

Muscle; resin sections, I.s.

Muscle Structure, E.M.

Muscle Structure, E.M.

Sarcomere structure

Muscle artefacts

Muscle artefacts

Nerves biopsied

Sural nerve biopsy, at ankle midway between Achilles tendon and lateral malleolus (from Ginsberg L et al. Practical Neurology, 3, 306, 2003)

Nerve biopsy

Cutting specimen: nerve.

Plan of Campaign

- H & E frozen sections,
- Very quick
- Identification of inflammation,
- Myelin difficult to see

Resin sections:

- Several days
- Difficult to identify cells
- Myelin & axons shown

Example: metachromatic leucodystrophy not identifiable on H & E

Recommended Procedure

- Cut & stain H & E of frozens + Immuno immediately
- Cut and stain resin sections for light microscopy as soon as possible
- Cut & stain thin sections for EM
- Do additional immuno after reviewing immuno & resin sections
- Make teased nerve preparations if:-
- epoxy shows thin myelin (regeneration or remyelination?)
- epoxy shows possible axonal atrophy
- epoxy shows possible tomaculous changes
- Send DNA for genetic studies if indicated
- Morphometry of resin section

For best resin processing:-

 $\begin{array}{cccc} & PO_4 & --- & May \ produce \ EM \ artefact \\ PIPES \ (piperazine-N-N'-bis \ (2- \\ & ethane \ sulfonic \ acid) \ -- \ BEST \\ & Na \ Cacodylate \ - \ Toxic \end{array}$

 $\begin{tabular}{|c|c|c|c|c|}\hline OsO_4 & \longrightarrow & +1.5\% \ K_3Fe(CN)_6.3H_2O \\ & +3\% \ NaIO_3 \end{tabular} \begin{tabular}{|c|c|c|c|} & +1.5\% \ K_3Fe(CN)_6.3H_2O \\ & +3\% \ NaIO_3 \end{tabular} \end{tabular}$

Dehydration — Use Dried ethanol

Suggested schedule

2.5% glutaraldehyde/PIPES **3hr to overnight.** Wash in PIPES buffer + 2% sucrose 30min 1%OsO₄/PIPES (+1.5%K₃Fe(CN)₆3H₂O +3%NaIO₃) 3h – overnight Dehydrate :-15% ethanol 2 x 5 min. 30% ethanol 2 x 10 min. 2 x 15 min. 50% ethanol 2 x 30 min. 70% ethanol dehydrated absolute ethanol 3 x 20 min. dehydrated absolute ethanol 2 x 60 min. 1,2 epoxy propane rinse 1,2 epoxy propane 2 x 15 min. epoxy resin +1,2 epoxy propane, 1:1 1 h epoxy resin +1,2 epoxy propane, 3:1 3 h – overnight overnight - 24 h epoxy resin embed in epoxy resin at 65°C at least 24 h.

Trimming for EM

Nerve Structure

Normal Myelinated Nerve Fibre

Nerve Structure

Myelin Structure, 3d

Node of Ranvier

Node of Ranvier

Node of Ranvier

Remak fibres

Perineurium

Teased Nerve Fibres

Axonal degeneration

Axonal regeneration

Remyelination

Teasing Schedule

- As before but:
- Don't add K₃Fe(CN)₆3H₂O to OsO₄
- Use Toluine instead of propylene oxide
- Do NOT add accelerator to the resin mix
- Store samples in fridge or freezer
- For teasing use finest needles obtainable
- Gently pull perineurium apart
- Separate into smaller bundles of fibres
- Separate individual nerve fibres
- Pick up carefully, lay out as straight as possible on a clean slide
- Cover with fresh complete resin mix

Resin Staining

- Thionine & Acridine orange
 - 0.1% thionine in 90% ethanol
 - 1% acridine orange aqueous
 - Both alkaline solutions
- Procedure
 - Sections collected on slide in 10% acetone
 - Thionine placed on, heated, washed off; dried
 - AO placed on, heated, washed off, dried.
 - Coverslipped with epoxy resin
 - Ref. Sievers J. 1971, Stain Technol 46, 195-9

Avoiding Artefacts

- Handle nerve very carefully;
 - Do not stretch, cut carelessly, twist or compress
- Fix immediately
 - Use fresh fix (or keep frozen)
- Process carefully
 - Dehydrate ethanol (Linde sieves)
- Cut perfect sections
- Stain correctly

Normal Nerve

Handling + PM Artefact

PM Artefact

Handling Artefact

EM Handling Artefact

Handling + poor staining

Shrinkage (drying out or hyperosmol?)

Inadequate Fixation

Inadequate fixation

Unsatisfactory Schedule

_	 Glutaraldehyde 		3hr
	 Sucrose cacodylate buffer x6 		O/N
	 1% osmium tetroxide 		3hr
	 50% ethanol 		10 min
	 70% ethanol 		10 min
	 Absolute ethanol 	x2	10min ea
	 Propylene oxide 	x2	15min ea
	 PO:epoxy resin 	1:1	1hr
	 PO:epoxy resin 	1:3	O/N
	 Final resin 		

Processing Artefacts

Processing Artefact

Processing artefact: Schmidt-Lanterman Incisures

Processing Artefact

Useful Artefact

- Age changes (>55yrs)
- Renaut bodies
- Reich granules
- TS through node of Ranvier
- Artefacts

Renaut body

Reich granules acid ptase +ve, =lysosomes,

Node

AND FINALLY:

.Vital C, Vallat J-M. Ultrastructural Study of the Human Diseased Peripheral Nerve. Amsterdam: Elsevier, 1987.

Midroni G, Bilbao JM, Cohen SM. Biopsy diagnosis of peripheral neuropathy. Boston: Butterworth-Heinemann, 1995.

King RHM. Atlas of Peripheral Nerve Pathology. London: Arnold, 1999.

- Cumming,WJK, Fulthorpe, J, Hudgson, P, Mahon, M. Colour Atlas of Muscle Pathology, Mosby-Wolf, London, 1994
- Dawson TP, Neal JW, Llewellyn L, Thomas C Neuropathology Techniques. Hodder Arnold 2003
- King, RHM, The Diagnostic Electron Microscopy of Nerve. In Diagnostic Electron Microscopy;
 A Practical Guide to Interpretation and Technique. Eds Sterling J.W. & Eyden, B. Wiley, 2012
- King, R.H.M. Microscopic Anatomy of Peripheral nerve, Chap 2 Peripheral nerve disorders (Hand book of Clinical Neurology). Eds Said, G. & Krarup, C. Elsevier, 2012??

King, R.H.M. & Ginsberg,L. Nerve Biopsy. Chapter 5 As above